INDIAN SCHOOL MUSCAT
FINAL TERM EXAMINATION
FEBRUARY 2019

CLASS XI
 Marking Scheme - COMPUTER SCIENCE (Code:283)[THEORY]

Q.NO.	Answers	$\begin{aligned} & \text { Marks } \\ & \text { (with split } \\ & \text { up) } \end{aligned}$
I.a.	$\text { Throughput }=\frac{\text { The number of jobs completed }}{\text { Total time taken to complete the jobs }-1 \text { mark for definition }}$,
b.	RAM- Random Access Memory is a volatile memory. It cannot keep or save the contents once the power is off. ROM- Read Only Memory contains pre-written programs which are stored in permanently even after the power is off. Programs like BIOS are stored in ROM.	1
c.	Proprietary software is the software that is neither open nor freely available. Its use is regulated and further distribution and modification requires permission by vendor. Source code not available. - $1 / 2$ Mark Example: Microsoft Windows -	1
d.	Any two points about UNICODE - 1/2 Mark each	1
e.	i) Providing user interface ii) Handling I/O operations(any 2) -	1
f.	i)Parallel processing ii)Superconductors -	1
g .	Any two points - 1 Mark each	2
h.	i) $(7642)_{8}=(111110100010)_{2}$ ii) $(2 \mathrm{~A} 3)_{16}=(675)_{10}$ 1 Mark each	2
II.a.	Comments provide internal documentation of a program. Indentation makes the statement clear and readable. - $1 / 2$ Mark each	1
b.	Syntax errors- Syntax refers to formal rules governing the construction of valid statements in a language. - Example: Missing of a semiciolon at the end of a statement. Semantics errors- refers to the set of rules which give the meaning of a statement.e.g. $\mathrm{X} * \mathrm{Y}=\mathrm{Z}$ - cannot come on the left side of an assignment statement. - 1/2 Mark	1

c.	Effective and efficient, User friendly, Self documenting code, Reliable, Portable, Robust (Any 4 characteristics) - ½ Mark each	2
d.	i)Any two uses of documentation - $1 / 2$ Mark each ii)Adaptive maintenance To accommodate changing needs, time to time , maintenance is done and is called adaptive maintenance. For example new government may need to process new reports or market conditions - 1 Mark	2
e.	Crack the problem, Code the algorithm, Compile the program and Execute the program. - (Any 3) - 1 Mark each	3
f.	i) Pretty printing- When a program formatting is done to make a program more readable - 1 Mark ii) Robustness - The ability of a program, to recover following an error and to continue operating within its environment, is called robustness. - 1 Mark iii) Guard code- The code which can handle exceptional data errors and operational errors is called Guard code. - 1 Mark	3
III.a.	i) Weight $>=135 \& \&$ Weight $<165-$ $1 / 2$ Mark ii) Y $\% 2!=0$ $1 / 2$ Mark	1
b.	i) $(\operatorname{sqrt}((2 * x) /+(3 * y)) /(4 * m))-\operatorname{pow}(w, 6)$ - $1 / 2$ Mark ii) $\cos (x) / \operatorname{atan}(x))+x$ - $1 / 2$ Mark	1
c.	Type casting operators allow you to convert a data item of a given type to another data type according to the requirement. It is explicit conversion by the programmer. $-1 / 2$ mark Example - any one - ½ Mark	1
d.	fundamental data types- that are not composed of any other type. - $1 / 2$ Mark ex. char, int(any one) - $1 / 2$ Mark derived data types- composed of fundamental data types. - $1 / 2$ Mark ex. Array (any one) - $1 / 2$ Mark	2
e.	A pointer is a variable that holds the address of another variable in memory where a value is stored. 1 Mark Example: int $x=10$; int * ptr ; // here otr is a pointer variable $\mathrm{ptr}=\& \mathrm{x}$;// The address of x is stored in ptr 1 Mark	2
f.	Data type modifiers -A modifier is used before the data type to alter the meaning of the base type to fit various situations more precisely. e.g. short, long. - 1 Mark Reference variable - A reference is an alternative name for an object. It provides an alias for a previously defined variable. 1 Mark	2

g.	for header file $1 / 2$ Mark declaration \& input \& output statements - 1 Mark for conditional operator statement. - $11 / 2$ Mark	2
h.	i) The multiple use of input or output operators(">>" or "<<") in one statement is called cascading of I/O operators. - 1⁄2 Mark cin>>a>>b; cout<<"Sum=" \ll s; (any example) - 1/2 Mark ii) Escape sequence - Non graphic characters that cannot be typed directly from keyboard eg. tabs, carriage return etc. these can be represented by using escape sequence. - $1 / 2$ Mark Eg - ' 1 ' ' Horizontal tab - $1 / 2$ Mark iii) Dynamic initialization is the process of giving an initial value to a variable during run time. Eg- int x ; $\operatorname{cin} \gg x ; \quad \text { int } z=x+10 ;$	3
IV.a.	i) iostream.h -1/2 Mark. ii) math.h -1/2 Mark.	1
b.	i) number of elements in the array - $100 \quad-1 / 2$ Mark. ii) total number of bytes required -400 bytes $-1 / 2$ Mark.	1
c.	Header file, declarations \& output statement with endl at correct place - 1 Mark Correct nested loop - 1 Mark	2
d.	Output- $\begin{array}{ll} a=2 b=4 & 1 / 2 \text { Mark each } \\ x=2 y=2 & 1 / 2 \text { Mark each } \end{array}$	2
e.	\#include<iostream.h> void main() $/ / /$ no parenthesis - $1 / 2$ Mark $\left\{\right.$ int $\mathrm{x}[6]=\left\{2,5,3,-5,2_{-}\right\} ; / /$no element - $1 / 2$ Mark for $(\mathrm{i}=0 ; \mathrm{i}<6 ; \mathrm{i}++) / /$ semicolon required - $1 / 2$ Mark cout $\leq<\mathrm{x}[\mathrm{i}] ; / / \ll$ operator - $1 / 2$ Mark $\}$	2
f.	int $\mathrm{x}=1, \mathrm{~s}=0 ;-$ $1 / 2$ Mark while $(\mathrm{x}<=100)-$ $1 / 2$ Mark $\{\mathrm{s}+=\mathrm{x} ;$ $\mathrm{x}+=2 ;$ - $\}$ cout $\ll \mathrm{s} ;$	2
g .	Header file, declarations, input statement , output statement- 1 Mark Correct logic - 2 Marks	3
h.	Header file, declarations, input statement , output statement- 1 Mark Correct logic - 2 Marks	3
i.	Header file, declarations, input statement - 1 Mark Correct logic for displaying the border elements - 2 Marks	3

j.	Header file, declarations, input statement - 1 Mark Correct logic - 2 Marks	3
k.	Header file, declarations - $1 / 2$ Mark Correct logic - 3 Marks for displaying $1 / 2$ Mark	4
1.	Header file, declarations - $\quad 1 / 2$ Mark Correct logic to use structure to input 10 employee details and find total salaryCorrect logic to use structure to input 10 employee details and find total sa 3 Marks for displaying 1/2 Mark	4
m .	Function header and Return statement - 1 Mark Correct Logic - 3 Marks	4

